§6.5. Конверсии рент
Конверсия рент широко применяется при реструктурировании задолженности. Как известно, при этом нередко условия погашения долга смягчаются, однако принцип эквивалентности соблюдается и в этих случаях, обычно, правда, в урезанном, если т.-1К можно сказать, виде. Подробнее о реструктурировании Долр» будет сказано в гл. 9. Здесь же обсудим несколько основных случаев конверсии рент.
Выкуп ренты. Этот вид конверсии сводится к замене ренты единовременным платежом. Решение проблемы здесь очень простое. Искомый размер выкупа должен быть равен современной стоимости выкупаемой ренты. Для решения задачи в зависимости от условий погашения задолженности выбирается та или иная формула расчета современной стоимости потока платежей. Естественно, что применяемая при расчете современной стоимости процентная ставка должна удовлетворять обе участвующие стороны.
Рассрочка платежей. Обсудим теперь задачу, обратную выкупу ренты. Если есть обязательство уплатить некоторую крупную сумму и стороны согласились, что задолженность будет погашена частями — в рассрочку, то последнюю удобно осуществить в виде выплаты постоянной ренты. (В.М. Третьяков, например, предлагал В.В. Верещагину оплатить несколько его картин путем выплаты соответствующего аннуитета.)
Для решения задачи приравниваем современную стоимость ренты, с помощью которой производится рассрочка, сумме долга. Задача обычно заключается в определении одного из параметров этой ренты — члена ренты или ее срока — при условии, что остальные параметры заданы. Подобного рода задачи подробно обсуждались в § 5.4, поэтому здесь нет смысла останавливаться на них.
Объединение (консолидация) рент. Объединение рент, очевидно, заключается в замене нескольких рент одной, параметры которой необходимо определить. В этом случае из принципа финансовой эквивалентности следует равенство современных стоимостей заменяющей и заменяемых (консолидированных) рент, что соответствует равенству
А = ЯАд9 (6.32)
где А — современная стоимость заменяющей ренты, А — современная стоимость д-й заменяемой ренты.
Объединяемые ренты могут быть любыми: немедленными и отсроченными, годовыми и /^-срочными и т.д. Что касается заменяющей ренты, то следует четко определить ее вид и все параметры, кроме одного. Далее, для получения строгого баланса условий, необходимо рассчитать размер неизвестного парамет
ра исходя из равенства (6.32). Обычно в качестве неизвестного параметра принимается член ренты или ее срок. Так, если заменяющая рента постнумерандо является немедленной и задан ее срок А7, то из (6.32) следует
24
Я = (6.33)
1 - (1 + 0~я |
В свою очередь, если задается сумма платежа (размер члена заменяющей ренты) и его периодичность, то отыскивается срок новой ренты. Обычно задача сводится к расчету п по заданному значению а .
(см. § 5.4 и табл. 5.1). Необходимая для расчета величина коэффициента приведения определяется условиями задачи. Для немедленной ренты постнумерандо имеем:2/С „ ■
Если 2 Л известно, то, определив на основе (6.34) величину я 4 п, получим
-1п(1----------- ч-[)
Ш(1+0 • (635)
*-< 1. |
Как видим, для того чтобы задача имела решение, необходимо соблюдать условие:
Яа я
ПРИМЕР 6.11. Три ренты постнумерандо — немедленные, годовые — заменяются одной отложенной на три года рентой постнумерандо. Согласно договоренности заменяющая рента имеет срок 10 лет, включая отсрочку. Характеристики заменяемых рент: = 100; 120; 300 тыс. руб., сроки этих рент: 6; 11 и 8 лет. Если в расчете принять ставку сложных процентов, равную 20%, то сумма современных стоимостей этих рент составит немного более 2002,9 тыс. руб. (см. табл. 6.1)
Размер члена заменяющей ренты равен
2002,946 |
я = |
а7;20и |
2002,946
960,189 тыс. руб.
3,60459 х 1,2~3 Если бы заменяющая рента была немедленной, то
2002,946 Я в ~3^60459" = 555'665 ТЫС- РУб'
Определение члена заменяющей ренты Таблица 6.1
|
Продолжим пример.
Пусть теперь заданным является не срок, а сумма годового платежа, скажем 1500 тыс., и необходимо найти срок заменяющей ренты. Ход решения: определяется современная стоимость немедленной ренты, затем рассчитывается ее срок.А = 2002,946 х 1,23 = 3461,091 тыс. руб.
По формуле (6.35) получим
, 3461,091
Чп 1------------ ------ 0,2
= 3,395 года. |
+ / |
1500
Іп 1,2
Округляем ответ до 3 или 4 лет и компенсируем нехватку покрытия долга или излишки (см. пояснения в § 5.4.) при определении срока ренты.
Рассмотрим один частный случай. Пусть член заменяющей ренты равен сумме членов заменяемых рент: Я = 2 /?. Все ренты годовые, постнумерандо. Если процентная ставка у всех рент одинаковая, то в силу (6.32) получим
1-1 + /
К
где п — срок заменяющей ренты. После преобразований находим
*----------------------
Еще по теме §6.5. Конверсии рент:
- Словарь
- 4.3 Постоянные ренты
- Метод определения бухгалтерской рентабельности инвестиций.
- Сохранение мира, разоружение и конверсия военного производства
- § 11.3.4. Оптимизация рыночной стратегии и выбор конкурентных позиций на рынке
- К
- 13.5. Конверсія фінансових рент
- 20.2.5. Потенциальные конкуренты в банковских отраслях
- Глава 6. ПЕРЕМЕННЫЕ И НЕПРЕРЫВНЫЕ РЕНТЫ. КОНВЕРСИЯ РЕНТ
- §6.5. Конверсии рент
- Глава 4 . КОНВЕРСИЯ РЕНТ
- КОНВЕРСИЯ РЕНТ
- 1.9. Конверсия аннуитетов